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investigated systematically. Closed forms of the Chebyshev expansion for an 
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"structure factor" expressed as the linear combination of the "s tep-down 
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1. Introduction 

The characteristic polynomial of a graph or structure is one of the important  
structural invariants, defined as Pc(x) = ( -1 )  n det (A -xE); where A and E are, 
respectively, the adjacency matrix and unit matrix for graph G with n vertices. 
Recently an alternative but equivalent form for Pc(x) was proposed such that, 
instead of expressing the polynomial as a function of x, is expressed as a linear 
combination of the characteristic polynomials S,(x) of linear chains or paths 
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with n points [1]. Let us call this expression as Chebyshev expansion (vide infra), 
which has several simple recurrent properties and has been shown to be useful 
in constructing the characteristic polynomials for large molecules [2]. Application 
to selected families of structurally related graphs (molecules) has revealed impor- 
tant regularities in the characteristic polynomials of the individual members of 
a family which in numerous cases give much simpler pattern than the conventional 
polynomial form expressed in terms of x. 

On the other hand, several new efficient techniques for expanding and solving 
the characteristic polynomial of complex graphs were proposed quite recently, 
e.g., the transfer matrix method [3, 4], the partition technique [5], the polynomial 
matrix method [6-8], the pruning technique [9], the block-diagonalisation 
method [10], the operator technique [11] etc. The characteristic polynomial is 
closely related to the topological index Z~ [12, 13] and also to the matching 
polynomial [14-16], whose interesting mathematical properties have been dis- 
cussed extensively [17-19]. By combining with some of these new concepts and 
techniques several important mathematical consequences of the Chebyshev 
expansion were discovered. These informations are useful not only for obtaining 
the Hiickel molecular orbitals of large ~-- electron systems but also for elucidating 
the "topology dependency" of the electronic structure of infinitely large ~- 
electron networks [20]. 

2. Chebyshev Polynomial 

In this paper let the characteristic polynomial of a path graph Sn (i.e., a graph 
composed of n linearly connected vertices) be denoted as Sn(x) [21], and is 
expressed as 

E~/EJ ( n k k )  ._2 k S.(x)= Y~ (-1) k x (n->O). (1) 
k=O 

Unless confusion occurs the notation Sn is used for S,,(x). Incidentally the 
Chebyshev polynomial of the second kind S,,(x) [22] has been shown to be 
identical to the characteristic and also the matching polynomials of a path graph 
S, [23, 24]. Eq. (1) has already been reported in 1957 by Collatz and Sinogowitz 
[25], when non-uniqueness of characteristic polynomials was recognised for the 
first time. From above we have: 

So = 1, $1 =x, $2 =x  2 -  1, $3 = x3-2x ,  

S4 = x 4 -  3x2 + l, Ss = xS-4x3  + 3x, etc. 

By successive substitution for Eq. (1) we get: 

1--So, x =$1, x2=$2+So, x3=$3+2S1, 
4 5 x = $4 + 3S2 + 2S0, x = $5 + 4S3 + 5S1, etc. [26]. 
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Generally x" is obtained in the form of 

[,,/2] 
X n =  E Bn,kSn-2k. (2) 

k=O 

An explicit form of B,,,k will be given later. 

3. Recurrence Formulae 

Among the several recurrence formulae for the characteristic polynomials the 
following two relations are useful: 

(I) Pc(x) =Pc-t(x)-PG~,(x) [12, 13, 27, 28], (3) 

G G - ~  Ge~ 

(II) P,:s(x) = P6-{l,}(x) +P~-{tj}(x) -Pc-{t,+ta(x) [13, 29], (4) 

G G -  "[~it G -  .[9_j } G -  "[~i + ~j} 

where the meaning of the notations of ~ and { } is clear from the above diagrams. 
Note, however, that the pivot edge l in (I) and vertex p in (II) should be so 
chosen that the original graph G becomes disconnected by their deletion. 
Application of Eq. (3) to a path graph gives the well-known recurrence formulae 
for the Chebyshev polynomial of the second kind [12, 23, 30], 

S,, =Sk'S,,-k --Sk-l"S,-k-1 (n >-k ->2) 
(5) 

S,* =$1"S.-1-S.-2 (n ->2). 

By successive application of Eq. (5) we obtain [1, 2, 23]: 

Srn " S n  = Sra +n -[- S i n + , * - 2  '-1-" S i n + n - 4  -'[-" " " of_ Slra_n] .  (6) 

This formula expresses a product of two S functions in terms of the sum of a 
collection of S functions of the same parity from rn + n to I m -  n [. The formal 
similarity of Eq. (6) and vector addition of angular momenta can now be exploited 
by adopting some of the formalism in the algebra of angular momenta, such as 
the use of step operators. Let us define the following operators t~ and d for S," 

iT& = &+l (n -> 0) 

d&  = s._~ (n -> 1) (7) 
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or more generally 

~kS,, =S,,+k (n >--0) 

dkS, = S,-k (n >-k ), 
(7') 

which represent respectively step-up and step-down operators for S,. By the use 
of t7 and d we can rewrite some of the previously given recurrence relations 
and products. For example, with m = 1 Eq. (6) becomes: 

XSn=Sn+lq-Sn_l=(~-~-d)Sn (n>--O) (8) 

or as an operator expression, 

x = a + d. (9) 

With an arbitrary positive integer m Eq. (6) can be expressed as 

Sin" Sn = (1 q'-dZ'~-d4-[ - . . .  q.-dZl)Sm+n (l = min (m, n)). (10) 

Further from the definitions of ~ and d we hax;e 

a?t3 = tTd = 1. (11) 

Note that Eq. (11) does not hold for the following cases 

daSo = So e adS0 = 0. (12) 

From Eqs. (9) and (11) we get 

t~ = (x + 4x-~- 4)/2 (13) 

= (x - 4x -~-  4)/2. 

With proper use of the step operators we can now construct the table of B,,.k 
coefficients (Eq. (2)) shown in Table 1, which represents a half-triangle of Pascal, 
for which the same rules as for Pascal triangle hold, except that the other half 

Table 1. Bn, k coefficients 

n ~  0 1 2 3 4 5 

0 1 
1 1 
2 1 1 
3 1 2 
4 1 3 2 
5 1 4 5 
6 1 5 9 5 
7 1 6 14 14 
8 1 7 20 28 14 
9 1 8 27 48 42 

10 1 9 35 75 90 42 

See Eqs. (2) and (16) 



Topological Dependency  of the Characteriatic Polynomial 477 

of the triangle is suppressed. Note that the series of the coefficients appearing 
in the last column represent Catalan numbers [31, 32] which can be expressed as: 

= 1 ( 2 / ; 1 )  (14) 
B21,t 21+ 1 \ 

By observing the following recurrence relations, 

B,,,k =B,,-1,k-l+B,,-1,k (1 -<k -< [n/2]) 
(15) 

B~.o= 1, 

we get the general expression for B,,,k as 

n - 2 k  + l ( n k l  ) (16) 
B,,,k n + 1 

With the a~ operator, x" can be expressed as 

xn= Y n + l  d2ks"" (17) 
k=O 

4. Chebyshev Expansion 

By substitution of Eq. (17) into the known forms of the characteristic polynomials 
expressed in terms of x k it is straightforward to obtain the equivalent forms, the 
Chebyshev expansion, of the characteristic polynomials [33]. We can write in 
general 

Pc(x)= co, so_ . (18) 
k=O k = l  

The explicit forms for the trees of maximal valency four and with not more than 
nine vertices have been given in the literature [1, 2]. 

Note that S,-k is expressed as dks,,. Then if we deem a given graph G with n 
points as a member of a series of graph {G~}, we can write Eq. (18) into a 
compact expression as 

G~ =ff$, (19) 

with a proper operator ff of the form 

= ~ Ckd k. (20) 
k=0 

Let us call ff as the "structure factor" of the Chebyshev expansion of the 
characteristic polynomial for the series of graphs {Gn }, each of which is composed 
of a "head" in common and a "tail" of different length. Inspection of the available 
results of the Chebyshev expansion gives us several interesting and useful 
properties of them, on which we are going to expose as Theorems and Conjec- 
tures. 
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Theorem 1. For a series of graphs {G,}, whose characteristic polynomials recur 
as  

G~+I =xGn -G,-1, (21) 

there exists a common operator ~ of the form of Eq. (20) such that 

G, = gS, (19) 

for n larger than a certain value. 

Proof. If two successive entries G,-1 and G~ are expressed by a common operator 
r of the form of Eq. (20) with n - 1 -> m as Eq. (19), then by using Eq. (9) we have 

x G .  = (a + d) f fs .  

= c (a+d)d% 
k = 0  

= ckdk(Sn+l+Sn-1)  
k = O  

= gSn+l +Gn-1,  

which gives 

an+l = g S n + l .  

(as long as n -> k) 

(from Eq. (21)) (Q.E.D.) 

5. Star Graphs 

As the first example of the Chebyshev expansion consider the following graph G,, 

m n 9  n m - 2  

G,: ~ ~ ~ (n-m-2>-m) 
0 " 0 " O " "  " 0  0 " "  " 0  0 
1 2 m m + l  n - I  

in which a branch of a unit length is attached to the path graph S,-1 at the 
(m + 1)th point counted from one of the end points of S~-1. Note that the 
numbering should be done to get the smaller m value, i.e., m-< n - m -  2. By 
choosing this branch as the pivot line /, and using the recurrence formula (I) 
and Eq. (6), the characteristic polynomial G, reduces to 

G n  = S 1  " S n - - l - - S m  " S n - m - 2  

= ( S  n -t- S n _ 2 )  - ( S n - 2  q'- S n - 4  - t - .  �9 �9 -Jr S n _ 2 m _ 2 )  

= S n  - -  S n - - 4  - -  S n - - 6  . . . . .  S n  --2m --2, 

Now the structure factor, or operator g, for Gn in this case is 

= 1 - d ' ( l + d 2 + d 4 +  . . . + d  2m-2) 

= 1 -D1  �9 Din. (22) 
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Table 2. The Chebyshev expansions for the characteristic polynomials of the lower members of 

graphs with a branch of unit length 

m = l  

m = 2  

olo oIoo oIooo 
$ 4  - So $5  - S1 $ 6  - $2  

o o I ,  o o o r I o 

S 6 - S 2 - S 0 $7 -- S 3 -- S I 

m = 3  

0 ' 0  0 

T 
0 0 0 0 0 0 0 0 0,, 

$9-$5-$3-S1 

0 0 0 0 0 0 

$8  -- $ 4  - $2  

N 

0 I 0 0 0 0 

S 10 -- S6 - S4 - S2 etc.  

The structure factor 
a =  1 - d a ( l + ~ 2 + ' " + ~ 2 m - 2 )  

= 1 - D 1  �9 Dm 

0 O- �9 -0 O- �9 -0 

The notation 

Dm= d 2 + d 4 + " "  + d T M (23) 

will be useful for discussing the structure factor for complicated graphs. 

One can observe in Table 2 the regularity of the Chebyshev expansion of the 
characteristic polynomials for the lower members of the above series of graphs 
[35]. Generalisation of this result is straightforward and worth stating as a 
Theorem. 

Theorem 2. The structure factor for the following graph G. 

n I 

1 2 m m+l n - k  

is given by 

~, = 1 - D m  �9 Dk.  (24) 
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Proof. Choose the line joining the points m + 1 and n - k + 1 as the pivot, and 
we get 

Gn = Sk " Sn -k  - -Sk -1  "Sm " S . - m - k - 1  

= (S  k " S . - k  -- S k - l "  S n - k - 1 )  - -  Sk-1  ( S . - k - 3  "It-'" " 

+ S.-k-2m-1) (assume n - m  - k  - 1 - m )  

= S .  - - & - l ( & - k - 3 + S . - k - 5 + "  " "+S. -k-2 , . -1)  (from Eq. (5)) 

= & - (1 + d 2 + .  �9 �9 + d 2k-2)(5._4 + S.-6 -1-' " " "}- S.-2m-2) 

(assume n - k  - 2 m  - 1 ->k - 1 and from Eq. (10)) 

= & - (1 + d  2 + . . .  +d2k-2)(1 + d 2 + . . .  + d 2 " - z ) & _  4 

= (1 - D k  �9 Dm)S~. (Q.E.D.) 

Next consider the following graph G.,  

Gn " 

1TI 

0 0 0 ' ' - 0  

1 2 m 

n n-m 3 

O ' . ' O  
n-2 

n- !  

o (n - m  - 3 - - > m )  

G .  = S f f l  - d 2 D . , ) S . _ I - S 1  �9 Sm" S . - , . - 3  (from Eqs. (3) and (22)) 

= (a + d){(1 -d2Dm)d-(1 +d2+ . . .  +d2m)d3}s. 

= (1 + d2){(1 - d 2 D ~ ) - d 2 ( 1  + D~)}S.  

= (1 + 22)(1 - ~ 2 _  2~aD~)S. .  

This expression can be rearranged into the following form in line with the result 
of more  general cases. 

= (1  - D 1  " D,.)2-D~ (1 +D,~) 2. (25) 

Further,  by extending the lengths of both branches one by one we get the 
following Theorem.  

in which two branches of unit length are attached to the (m + 1)th point counted 
f rom the nearest  end point of S.-2.  By choosing one of the branches as the pivot 
line I we get 
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T h e o r e m  3 .  T h e  s t r u c t u r e  f a c t o r  f o r  t h e  f o l l o w i n g  g r a p h  G .  

an ; 

k 

0 0 O" "*0 

1 2 k 

n - ~ - m + l  

n? 

,J m! 
b 0 ' '  " 0  0 

n - ~ - m  

i) m 
n >_2 ( k  + l  + m ) - I  

is g i v e n  b y  

= (1 - D k  �9 D l ) ( 1  - D k  �9 D i n )  - D I  �9 D i n ( 1  + D k )  2 (26)  

= 1 - (Dr,. �9 D t  + D k  �9 D,,., + D r  �9 D , , )  - 2 D k  �9 D t  �9 D,, , .  (27)  

E x a m p l e s  of  T h e o r e m  3 f o r  t h e  s e r i e s  of  g r a p h s  w i t h  k = l = 3, m = 2 a r e  g i v e n  

in  T a b l e  3. A p p l i c a t i o n  of  T h e o r e m  3 t o  t h e s e  g r a p h s  g ives  

= 1 - 3 d  4 -  8 d  6 -  1 3 d  s -  1 4 d  1 ~  1 l d  1 2 -  6 d  1 4 -  2 d  16 (28)  

w h i c h  is v a l i d  f o r  t h e  g r a p h s  w i t h  n -> 15,  w h i l e  t h e  r e c u r r e n c e  f o r m u l a  

G . + 2  = x G . + I - G .  (21 ' )  

h o l d s  f o r  t h e  g r a p h s  as l ow  as n = 9. T h i s  d i s c r e p a n c y  a r i s e s  f r o m  t h e  i n e q u a l i t y  

(12) .  

G e n e r a l i s a t i o n  of  T h e o r e m  2 a n d  3 g ives  t h e  f o l l o w i n g  i n t e r e s t i n g  C o n j e c t u r e  

f o r  a n  a r b i t r a r y  s t a r  g r a p h .  

Table 3. Examples of Theorem 3 on the characteristic polynomial and its Chebyshev expansion 

n = 1 4  

n = 1 5  

n =16 

n =17 

Ga4 = x14-13x lZ  + 6 3 x l ~  + 1 6 9 x 6 - 9 0 x 4  +16x z 

= S x 4 - 3 S l o - 8 S 8 - 1 3 8 6 - 1 4 S 4 - 1 1 S 2 - 4 S o  
Gls = x 15 - 14x 13 +75x 11 _ 198x9 + 273x 7 _ l ~ x  5 + 54x 3 - 4 x  

815 - 3811 - 889 - 1387 - 14S5 - 11S3 - 6S1 
G16 = x 16- 15x14+ 88x 12 - 2 6 1 x l ~  144x4- 20x 2 

= S16 - 3S12 - 8Slo - 13Ss - 14S6 - -  11S4 - 6Sz - 2So 
G17 = x  17-16xlS + 102x 13- 336x 1I + 6 1 7 x O - 6 3 0 x 7 + 3 3 2 x S - 7 4 x 3 + 4 x  

: =  8 1 7  - -  3813 - -  8811 - -  13S9 - 14S7 - 11S5 - 683 - 2S1 

a n 

5 7 

6 8 

O. �9 "0 

1 2 3 9 10 

Note that the underlined term in G14 does not 
obey Eq. (28) 
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T h e o r e m  4 (Conjecture), The structure factor for the following star graph G, 
with a sufficient length of the tail 

, . . 4  

9>7 G.: o o (n>_2( i+/+k + l + m . . . ) _ l )  

� 9 1 7 6  
Y \ 

is given by 

~ = I - F ,  D i ' D j - 2  Y, Di'Di'Dk i<i i<i<k 

- 3  Y. D i  �9 D r  �9 D k  �9 D l  - - 4  ~ D i  " D  r �9 D k  �9 D t  �9 Dm -"  �9 � 9  i<!"<k<l i<j<k<l<m 
(29) 

This expression can be deemed as an extension of Eq. (27) in Theorem 3. 
Although we do not yet get a rigorous proof of this Theorem, its validity has 
been checked by a number of examples as shown in Table 4. Of course, this 
Theorem is not necessary for the calculation of the H/ickle MO of conjugated 
hydrocarbons, but it is very important for discussing the relationship between 
the branching of a tree and the coefficients of the characteristic polynomial. For 
example, we can derive quite readily the following Collorary. 

Table 4. Example of Theorem 4 

Gn : o 

n = 1 0  

n = l l  

n = 1 2  

A t 0 ~ 0-''0 

DI Di  

Glo = x io_  9x8 + 2 2 x 6  _ 19x4 + 5x2 

= 81o - 6S6 - 14S4 - 16S2 -- 7S_~o 

011 = X l l - -10x9 + 30xT-- 34x 5 +15 x3-- 2x 

= S l l  - - 6 S 7 - -  1 4 S 5 - -  16S3 -- 1081  

G lz  = x  12-  l l x  l~ + 3 9 x S -  56x6 + 3 4 x 4 -  7x 2 

= S 1 2 -  6S8 - 1486  - 1 6 8 4 -  1 0 S 2 -  380  

o :, I _ ( D 2 + 4 D 1 D 2 + D ~ ) -  2 2 = 2 = 2 ( 2 D 1 D E + 2 D 1 D 2 ) - 3 D 1 D 2  
n = 1 - 6 d  4 - 1 4 d  6 - 1 6 d  8 -  l O d  1 ~  3 d  le 

D1 = d 2 
D~ = d 2 + d '  

The graphs with n -< 10 does not obey the above structure factor ~. See  the underlined term in G l o  
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Co[lorary. The structure factor for a star graph, i.e., a tree with a single branch 
point, does not contain any step-up operator. That is all the coefficients Ck'S 
(k --- 0) of the Chebyshev expansion for a star graph are negative. 

6. Bicentric Tree Graphs 

Now try to examine the tree graphs with two branch points. If two branch points 
are separated to a reasonable extent an interesting property can be observed. 

Theorem 5. If two "structures" (branching and/or cyclisation) at both the ends 
of a long chain are separated well, the structure factor of this graph is the product 
of those for the component structures. 

Proof. Consider two graphs Fk and Gt with the structure factors of f and g such 
that 

Fk =fgk 

Gt = g'St, 
(30) 

and construct graph Hk+~ by joining both their tail ends (see Fig. 1). Further 
assume that the two relations (30) hold at least for the next lower members of 
Fk and Gl, namely, 

F k - 1  ~ ? S k - 1  

G .  = ~,Sz-1. 
(30') 

Fig. 1. A series of graphs composed of two 
"structures" Fk and Gl 

Hk+. 

H~.+i 

Gi 

� 9 1 6 9  
v 

~ 0 

L 

~ o 

\ �9 v 
Fk+x 

Gl 
A x 

�9 

Gl+l 
A . 

~  



484 H. Hosoya and M. Randi6 

Then by the use of the recurrence relation (I) we have 

Hk+t = F k  �9 G t - - F k - l  " G t - I  

~ - f S  k " g S l - f S k _ l . g S l _  1 

= ? ( S k i S l  -- S k - l i S l - 1 ) .  

Now ~ is expressed in terms of the operator d as in Eq. (20). Then we have 

S k ~ S i - - S k _ l g S l _  1 ~- ~ c j ( S k d ] S l - S k - l d i S l - 1 )  
i=0 

= ~ ci(Sk �9 S t - j  - -Sk -1  �9 S t - j - l )  (as long as I -  1 -->]) 
j=0 

= ~ CiSk+l-1 (from Eq. (5)) 
i=0 

= ~ cidiSk+l 
i=o 

Thus we get 

H ,  =f~S~ (n = k +Z). (31) 

Collorary: The characteristic polynomials of the series of graphs {H,} generated 
by successive insertion of lines between the two structures of Fk and GI (see Fig. 
1) recur as 

H,,+I = x H .  - H . - 1 .  

Proof.  Application of relations (I) and (II) to the series of graphs Hk+t gives 

Hk+l = F k  " G t - - F k - l  " Gt-1 (32) 

n k  +t-1 = F k - l  " G l  + F k  " G l - l -  X F k - l  " G I - I  (33) 

H k  +l+l = Fk + l " GI + Fk " GI+ I -- XFk " GI. (34) 

By combining the first two equations (32) and (33) we get 

XHk  +l -- n k  +l-I  = XFk �9 Gt  - f k - l  " GI - Fk  �9 GI -1  

= (XFk - - F k - 1 ) G I  + F k ( x G l  -- G t - 1 )  - -XFk  " GI 

=F~+I �9 Gl +F~, �9 G ~ + l - x F k  �9 Gt (from Eq. (4) or (21)) 

= Hk+t+l. (from Eq. (34)) (Q.E.D.) 

How Theorem 5 and its Collorary hold for bicentric graphs can be seen in Table 
5. Note that these Theorems hold also for the cases where Fk and/or G,t contain 
non-tree structures. Examples are shown in Table 6. 
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Table  5. Examples  of T h e o r e m  5 and its Collorary 

485 

Gn g a b 

I I (1-d4) 2 = 1 - 2 d a + d  8 7 7 
0 0---0 ' " 0 

I I (1 - ~4)(1 - ~ 4 -  ~6) 
= 1 -  2 d 4 - d 6 + d 8 + d  19 9 8 

0 0 ' 0'''0 0 

0 0 

t (l_d4_2d6_ds)( 1 - 3 d a -  2d 6) 
o . . . o  o =1-4d4-4d6+2ds+8d~~ '4 13 10 

a Min imum n for satisfying the c o m m o n  structure  factor 
h Min imum n for satisfying the recurrence relation G . + I  = xG. -G,,_~ 

Table 6. Examples  of T h e o r e m  5 and its Collorary to non- t ree  graphs 

e~ 

G~ 

n - !  

~ - 2  o...o o O 

2 1 
n F n 

G .  

I>~ 
o o 

~ 
O 

f = 1 - d 2 - 2d  3 - d 4 (n ~ 4) 

=~2 = 1 - 2 d 2 - 4 d  3 - d4 + 4 d S  
+ 6 d 6 + 4 d v + d  s (n ->7) 

F 4  = x 4 - 4 x 2 -  2x + 1 = 8 4 - 8 z  - 2 S 1 - 8 o  

F s = X S - 5 x 3 - 2 x 2 + 4 x  +2 

= 85- -83- -282- -81  

G6 = x 6 -  7x4 - 4x3  + l lx2 +12x + 3 

= 8 6 - 2 8 4 - 4 8 3 - 8 2 + 4 8 1 - 8 0  

GT = x T -  8xS - 4 x 4  +17x3 + 1 6 x 2 -  2x - 4  

= 8 7  - -  285 - 484 - $3 + 482 + 681 + 48o 

G8 = x 8 - 9x 6 - 4x s + 24x 4 + 20x 3 - 13x 2 _ 16x - 3 

= $8 - 286 - 485 - $ 4  -}- 483 + 652 + 4Sa + So 

Note  that a l though G 6 does not  obey  the s tructure factor ff the following recurrence  relation holds: 
G8 = xG7 - G6 
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If the two branch points get closer, both the effects of branching on the charac- 
teristic polynomial interact with each other. Inspection of the Chebyshev 
expansions for a number of bicentric graphs yields the following Conjecture. 

For a graph G,  with two branch points and a sufficiently Theorem 6 (Conjecture). 
long tail as 

0 O .  . . 0  " " " 0  0 

G n  : 

the structure factor is given by 

-- (1 - D i "  Din)(1 - D j .  D k )  --  d ~ t D k  �9 Din(1 + Di)  2 

= 1 - ( D i  �9 D ~  + D r  �9 D k  + d"2lDk �9 D i n )  

- 2 d 2 1 D j  " D k  �9 D m  + D i �9 D k  �9 D I "  Din .  

(35) 

( 3 6 )  

Table 7. Examples  of Theorem 6 

o I l o o o  
/'1 

o I o l o o  

o o l I o o  

oo I o I...o 

O 
/1 

(1 - D ~ ) ( 1  - D I "  D 2 ) -  d2D~ (1 +D1)  2 
= 1 - 2d 4 - 2d 6 - d s (n -> 7) 

(1 -D12)(1 - D 1 '  D 3 ) - d 4 D ~ ( 1  +D1)  2 
= 1 - 2 d a - d 6 - d s - d  TM (n --> 9) 

(1 - D i  " D2)(1 - D i  " D 3 ) - d 2 D 2 ( 1  +D2)  2 
= 1 - 2 d 4 - 3 d 6 - 2 d S - d  ,l~ (n ->9) 

(1 - D I  �9 D2)(1 - D 1  �9 O 4 ) - J a D ~  (1 +D2)  2 
= I - 234- 236-d8-  dl~ .2 (n - 11) 

O O oI  O - . . O  

(1 - D ~ ) ( 1  - D i  " D a ) - d 4 D 1  " D2(I +D2)  2 
= 1 - 2 d a - 3 d 6 - 2 d s - d ' ~  TM 

(n > 13) 

~Dm = d Z + d ~ +  - '  ' + d  2" 
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In Table 7 are given several examples of Theorem 6. No rigorous proof can be 
reached at the present time, but its validity has been checked extensively. Note 
that if we put 1 = 0 and Dt = 0 into Eqs. (35) and (36) we get Eqs. (26) and 
(27), respectively. 

Although we have not yet obtained a general expression of the Chebyshev 
expansion for an arbitrary tree graph, the regularity of the branching effect on 
this expansion reminds one of that of the topological index, Z~, proposed by 
one of the present authors [12]. It will be shown that by the use of the non- 
adjacent numbers and topological index [39] we can analyse more rigorously 
the relationship between the topological structure (i.e., branching and cyclisation) 
and the coefficients of the Chebyshev expansion. Through this relationship the 
structure dependency of the (conventional) characteristic polynomial of a graph 
will be clarified. 

7. Non-adjacent Number and Topological Index 

The non-adjacent number p (G, k) is defined as the number of ways for choosing 
k disconnected lines from graph G, with p(G, 0) being defined as a unity [12]. 
The topological index Z6 is the sum of all the p (G, k) numbers for G: 

ZG= ~ p(G,k), (37) 
k=O 

and was found to be correlated with a number of chemical problems, such as 
thermodynamic properties of saturated hydrocarbons [40, 41], Hiickel molecular 
orbital energies [42] and bond orders [43, 44] for unsaturated hydrocarbons, 
coding and classification of the molecular structure [45], etc. For tree graphs it 
was shown [12] that the characteristic polynomial Pc(x) can be expressed in 
terms of the non-adjacent numbers as follows: 

In/21 
Pc(x) = E (-1)~p(G, ~:)x "-2~ (38) 

k=0 

For a non-tree graph G with n points we need some "ring corrections" as [13, 44] 

In~2] 

Pc(x)= E ( -1 )~ (G ,  k)x "-2k 
k=0 

G ~ R  i 

+ Y~ (-2) r' ~ (-1)kp(G(~R~,k)xn-'~i -2k (39) 
i k=0 

where the second term is the sum of the contributions of all the component rings 
Ri together with all the possible combinations of ri disjoint rings, and n~ is the 
number of points in Ri, a ring or a set of rings. 

Suppose a graph G with n points, rn3 triangles, m4 tetragons, and rnr independent 
rings. Here mr is the minimum number of lines to be deleted for getting a tree 
and called as a cyclomatic number or the first Betti number [46]. By close 
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inspection of Eq. (39) it can be shown that the coefficients of the higher orders 
of PG(x) = ~ akX "-k is expressed in terms of these numbers as 

ao=l, a l = 0 ,  a2=-(mr+n-1) ,  a3 = - 2 m 3 ,  
(40) 

a4 =p(G, 2 ) -  2m4, 

while the lower coefficients become involved. Then by using relations (2), (16), 
and (40) we get the following Theorem. 

Theorem 7. The higher terms of the Chebyshev expansion of a graph is given by 

PG (x) = S~ - m~q,_2 - 2m 3S,-3 

- [(n - 3){(n - 2)/2 + mr} + 2m4 - p  (G, 2)]S,_, . . . .  (41) 

o r  

= 1 - m ~  2 -  2m3d 3 -  [(n - 3){(n - 2)/2 + m,} + 2 m 4 - p ( G ,  2)]2 4 . . . .  
(41') 

As has already been noted that the Chebyshev expansion of a tree graph is in 
the form of S , -  aS,-4 . . . .  (a -> 0), while the coefficients of the S,-2 and $,-3 
terms give the cyclomatic number and the number of triangles, respectively. For 
tree graphs further inspection of the expansion coefficients will be given in the 
later discussion. 

Examples of Theorem 7 are given in Table 8. Note that the structure factor for 
the last entry in Table 8 can be obtained as the product  of those for the component  
structures as predicted by Theorem 5 as 

o o - . .  )~= 1 - 2 2 2 - 4 2 3 - 4 2 " - 2 2 5 - 2 6  (n ->6) 

I> O O ' ' "  = 1 - d 2 - 2d  3 - d 4 (n -> 6) 

fff = 1 - 3 d 2 - 6 d  3 - 3 2 4 + 6 2 5 +  1326 

+ 1427+928+429+21~ (n ->9) 

The relation between the branching and the coefficients of the Chebyshev 
expansion is clear for tree graphs. 

Theorem 8. If the decrement  Sp(G, k) of the p(G, k) number for a tree graph 
Gn --- G relative to the isomeric path graph Sn is defined as 

ap(a, ~:) =p(S., ~ ) -p (a ,  ~:), (42) 

the Chebyshev expansion for G is given by 

(43) 
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Table 8. Example of Theorem 7 

489 

G n mr m3 m4 p(G, 2) Po(x) 

6 2 2 0 11 

o ~ o o 7 1 0 1 12 

o------o ~ 9 3 3 1 38 

$6 - 2 S 4 -  4 8 3  - S~ + 4S1 

- S o  

$7-S 5 - 4 S 3  - 3 S 1  

$ 9 -  3S7 - 6 S 6 -  3S5 + 6S4 

+ 13S3 + 14S2 + 9S1 + 4So 

The terms over the wavy line can directly be obtained from Theorem 7, to which all the notations 
are referred 

o r  

[n/2l ( l k ))Sn-21. Po (x ) = S. - ,~2 .k~2 (-  1)kB"-ak"-kSP (G, (44) 

Proof. By putting Eq. (2) into Eq. (38) we get 

m-k 
Po(x)  = ~ (-1)kp(G,k) ~ Bn-2k,lSn-2k-2b 

k =0 /=0 

where m = In/2]. ff we introduce another subscript f = l - k, the double summa- 
tion in the above equation can be converted into 

~ ~ (45) 
k=O j=0 /=0 k=O 

to give Eq. (43). By using the relations (42) Eq. (43) is splitted into two parts as 

} - ~, (--1)kB~-Zk,l-kSp(G, k) S,-21. (46) 
k~0 

As will be proved in Appendix there is a novel identity as 

(;3 1; E (--1)kBn-zkl-k  n l = O  
k=o ' = l > 0" (47) 

For tree graphs 6p(G, 1 ) = 0  and for all graphs 6p(G,O)=O. Then Eq. (46) 
reduces to Eq. (44). (Q.E.D.) 
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At first sight Eqs. (43) and (44) look alike. However, the latter gives us a deeper 
information on the structural features of the tree graph. That is the lower terms 
of Eq. (44) can be written down as 

PG (x) = S, - 8p (G, 2)S,_4 - {(n - 5)8p (G, 2) - 8p (G, 3)}S, - 6  

- {(n - 4 ) ( n  - 7)8p (G, 2 ) / 2  - (n - 7)8p (G, 3) + 6p (G, 4 ) } S . _ 8  . . . .  �9 

(48) 

The coefficients of the S,-4 term, 6p(G, 2), is known to be obtained by adding 
the contributions from different modes of branching as [12, 41] 

p(G, 2)  = (Y )  + 3 ( X ) ,  

where (Y) and (X) respectively represent the numbers of points the degree of 
which is three (tertiary) and four (quaternary). The reason why the tertiary and 
quaternary points have the 8p(G, 2) contributions of one and three will be clear 
from Fig. 2. Note that in the argument in Fig. 2 both the terminal structures, F 
and G, are irrelevant. Thus the effect of branching on the p(G, k) numbers is 

a) Tertiary branching 
Entry to the p(G, 2) number? 
S~ G. ---G 

pairo, ( ~  a b c ~ ~ a b c ~  
lines o o . 

a-b  no no 
a-c  yes no 
h-c  no no 

8p(G, 2) =p(S,,, 2)-p(G, 2) = 1 

b) Quaternary branching 
Entry to the p(G, 2) number? 
s .  G~ ~-G 

p a iro f  Q a b c d ~ ( ~  a tld ~ 
lines o . o o 

a-b no no 
a-c  yes no 
a-d yes no 
b-c  no no 
b-d yes no 
c--d no no 

8p(G, 2) =p(Sn, 2)-p(G, 2) = 3 

Fig. 2. Diagram illustrating the decrement 6p(G, 2) of the non-adjacent number at the tertiary and 
quaternary points 



Topological Dependency of the Characteristic Polynomial 491 

additive. By extending this discussion [47] one can infer that 

6p(G, 2)= Y~ (m21) (numberofpointsofdegreem). 
m = 3  

(49) 

A number of mathematical relations were found between the structure and the 
topological index (the sum of p (G, k) numbers) in connection with the theoretical 
interpretation of the empirical rules on the thermodynamic properties such as 
boiling point and absolute entropy [12, 40, 41]. By the aid of the theories 
developed here on the Chebyshev expansion these problems can be treated and 
solved in a unified manner. 

8. Cyclic Graphs 
For a cycle graph Cn with n points the characteristic polynomial can be expressed 
in terms of S.: 

C n ( x )  -~- C n  = S n  --  S n - 2  - 2 S 0  

n/2 n ( n k k )  x,_2k_2" = Z (--1)kn_---- ~ 
k = O  

[12] (50) 

Note that in this case the expression C,(x) differs from the Chebyshev polynomial 
of the second kind [22], where the last term in Eq. (50) is missing [48]. The 
relation (50) does neither follow from the recurrence relation (I) nor (II) but 
from another recurrence relation [44]. Namely, 

(III) P6(x) = Pa-l(x) - - P G E ) I ( X )  - -  2 ~ P~j,(x), (51) 
i 

G G-~ Geg. 
\ / 

where/~ means a detour path from the one end of l to another end, and the 
contributions from all such possible paths are to be taken. This relation holds 
for all the cases, and the relation (I) is a special case of (III). 

The Chebyshev expansion for substituted Cn cycles becomes more involved, but 
just as in the case of branched chains for a family of structurally related systems 
one can recognise regularity in the coefficients of the Chebyshev expansion and 
derive general expressions, selected examples of which are shown in Table 9. 

The general expressions for these series of graphs can easily be derived by using 
the recurrence relations (I)-(III), (10), and (50). As the last example of the utility 
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T a b l e  9. Structural factors for some series of cyclic graphs 

H. Hosoya and M. Randi6 

G. ~" Remark 

o . -  , o  
1 - d 2 - d 4 . . . . .  d 2 . , - 2  _ 2 d "  n > [3  m/2] 

o = 1 - D , , , - , -  2 d "  
n 

1 - 2 d  2 - 2 d  a . . . . .  2 d  2 m - 2  - d 2 ~  - 2 e t "  - 2d t 
= 1-2D,. 1-d  2" -2d  m -2d  ~ 

1 -- 2 d  2 - ~ 4  _ d6 . . . . .  d2m-2 _ 2 d ~  _ 2 d r  _ 2 d "  

= 1 -Dm_.-dZ-2d " -2d ' -2d"  

l ~ m  
n = l + m - 1  

n=l+m-2 

"D,. = dz+d~+ ' .  '+d  TM 

of the Chebyshev expansion let us consider the following graph 

The structure factor for this graph is readily obtained by using the results in 
Table 9 as 

= 1 - 2d  2 ^3 ~4 - 2 d  - d  - 2 d  s - 2 d  6, 

giving 

PG(X) =X6--7X4--2X 3+ l l x 2 + 2 X  - 4 .  

The coefficients of the second and third terms of both the expressions reveal 
to us that the graph has two rings one of which is a triangle (see Theorem 7). 

9 .  C o n c l u d i n g  R e m a r k s  

We have illustrated and exposed the Theorems of the alternative form for the 
characteristic polynomial for several families of structurally related molecular 
skeletons expressed in terms of the Chebyshev polynomials. The novel forms 
show considerable simplicity and allow deduction of general forms with fewer 
initial members  of a family. In addition, the recurrent expression for characteristic 
polynomials of a family can be proved valid for higher members ,  thus avoiding 
constructions for large related structures. While mathematical ly equivalent, the 
regrouping of terms makes  patterns for coefficients more obvious in many 
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instances, and in addition their interpretation somewhat different from that of 
ak coefficients. By focusing attention on families of graphs, rather than individual 
members one arrives at possible characterisation of graphs via the characteristic 
polynomial, in which one associated with a graph its family expression and the 
corresponding n. While some graphs can simultaneously be members of different 
families, some pairs of graphs of different structures may have the same charac- 
teristic polynomial and are called isospectral [49]. The Chebyshev expansion of 
the characteristic polynomials for these series of graphs may potentially be useful 
for the analysis of these problems. 

Appendix 

Proof of Eq. (47). 

We know two relations (1) and (2) between S,~(x) and x n, 

k=O 
(~) 

and 

[p/23 
xP= E BpdSp-2j, (2) 

j=0 

with m = [n/2]. If we put p = n - 2k and introduce another subscript ] = l -  k, 
the summation of j from 0 to [p/2] is transformed to that of l from k to m. 
Then Eq. (2) becomes 

,~-2k ~ B,~-2k,t-kSn-2l. (2') X = 
l = k  

Substitution of Eq. (2') into Eq. (1) yields 

k=O l = k  

= ~ ~ (_l)kBn_2k,t_k n k Sn-2t, (A) 
l~0 k=0 

where the order and the direction of the double summation have been changed. 
In order for Eq. (A) to be satisfied for all l, the following equality should be 
obeyed: 

' (;){ (--1)kB,-2k,t k n k = 1 l = 0  
k~o 0 l > 0 '  

which is nothing else but Eq. (47). 
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